Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase.

نویسندگان

  • Vladimir V Koval
  • Nikita A Kuznetsov
  • Dmitry O Zharkov
  • Alexander A Ishchenko
  • Kenneth T Douglas
  • Georgy A Nevinsky
  • Olga S Fedorova
چکیده

Formamidopyrimidine-DNA-glycosylase (Fpg protein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2'-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence—stopped-flow pre-steady-state kinetics

Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific ...

متن کامل

Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli

Proper maintenance of the genome is of great importance. Consequently, damaged nucleotides are repaired through redundant pathways. We considered whether the genome is protected from formamidopyrimidine nucleosides (Fapy*dA, Fapy*dG) via a pathway distinct from the Escherichia coli guanine oxidation system. The formamidopyrimidines are produced in significant quantities in DNA as a result of ox...

متن کامل

Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine.

A major stable oxidation product of DNA cytosine is uracil glycol (Ug). Because of the potential of Ug to be a strong premutagenic lesion, it is important to assess whether it is a blocking lesion to DNA polymerase as is its structural counterpart, thymine glycol (Tg), and to evaluate its pairing properties. Here, a series of oligonucleotides containing Ug or Tg were prepared and used as templa...

متن کامل

Rat 7,8-dihydro-8-oxoguanine DNA glycosylase: substrate specificity, kinetics and cleavagemechanism at an apurinic site.

Reactive oxygen species produce different lesions in DNA. Among them, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the major oxidative products implicated in mutagenesis. This lesion is removed from damaged DNA by base excision repair, and genes coding for 8-oxoG-DNA glycosylases have been isolated from bacteria, yeast and human cells. We have isolated and characterized the cDNA encoding the rat...

متن کامل

NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein.

Formamidopyrimidine-DNA glycosylase (Fpg) protein plays a prominent role in the repair of oxidatively damaged DNA in Escherichia coli. The protein possesses three enzymatic activities, hydrolysis of the N-glycosidic bond (DNA glycosylase), beta-elimination (AP lyase), and delta-elimination; these functions act in a concerted manner to excise oxidized deoxynucleosides from duplex DNA. Schiff bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2004